local_shipping Spend over €10 for free home delivery  place Free 2 Hour Click & Collect Service

Fermat's last theorem

by Takeshi Saito | 28 February 2015
Category: Mathematics
This is the second volume of the book on the proof of Fermat's Last Theorem by Wiles and Taylor (the first volume is published in the same series; see MMONO/243). Here the detail of the proof announced in the first volume is fully exposed. The book also includes basic materials and constructions in number theory and arithmetic geometry that are used in the proof. In the first volume the modularity lifting theorem on Galois representations has been reduced to properties of the deformation rings and the Hecke modules. The Hecke modules and the Selmer groups used to study deformation rings are constructed, and the required properties are established to complete the proof. The reader can learn basics on the integral models of modular curves and their reductions modulo $p$ that lay the foundation of the construction of the Galois representations associated with modular forms. More background materials, including Galois cohomology, curves over integer rings, the Neron models of their Jacobians, etc., are also explained in the text and in the appendices.
€71.33
213 Reward Points
Currently out of stock
Delivery 5-7 Days
Eligible for free delivery

Any purchases for more than €10 are eligible for free delivery anywhere in the UK or Ireland!

This is the second volume of the book on the proof of Fermat's Last Theorem by Wiles and Taylor (the first volume is published in the same series; see MMONO/243). Here the detail of the proof announced in the first volume is fully exposed. The book also includes basic materials and constructions in number theory and arithmetic geometry that are used in the proof. In the first volume the modularity lifting theorem on Galois representations has been reduced to properties of the deformation rings and the Hecke modules. The Hecke modules and the Selmer groups used to study deformation rings are constructed, and the required properties are established to complete the proof. The reader can learn basics on the integral models of modular curves and their reductions modulo $p$ that lay the foundation of the construction of the Galois representations associated with modular forms. More background materials, including Galois cohomology, curves over integer rings, the Neron models of their Jacobians, etc., are also explained in the text and in the appendices.
Currently out of stock
Delivery 5-7 Days
Eligible for free delivery
213 Reward Points

Any purchases for more than €10 are eligible for free delivery anywhere in the UK or Ireland!

€71.33
Currently out of stock
Delivery 5-7 Days
Eligible for free delivery
213 Reward Points

Any purchases for more than €10 are eligible for free delivery anywhere in the UK or Ireland!

Product Description

This is the second volume of the book on the proof of Fermat's Last Theorem by Wiles and Taylor (the first volume is published in the same series; see MMONO/243). Here the detail of the proof announced in the first volume is fully exposed. The book also includes basic materials and constructions in number theory and arithmetic geometry that are used in the proof. In the first volume the modularity lifting theorem on Galois representations has been reduced to properties of the deformation rings and the Hecke modules. The Hecke modules and the Selmer groups used to study deformation rings are constructed, and the required properties are established to complete the proof. The reader can learn basics on the integral models of modular curves and their reductions modulo $p$ that lay the foundation of the construction of the Galois representations associated with modular forms. More background materials, including Galois cohomology, curves over integer rings, the Neron models of their Jacobians, etc., are also explained in the text and in the appendices.

Product Details

Fermat's last theorem

ISBN9780821898499

Format

Publisher (28 February. 2015)

No. of Pages234

Weight288

Language English (United States)

Dimensions 216 x 140 x 12