An algebraic introduction to complex projective geometry

by Christian Peskine | 09 April 2009
PAPERBACK
Category: Mathematics
In this introduction to commutative algebra, the author leads the beginning student through the essential ideas, without getting embroiled in technicalities. The route chosen takes the reader quickly to the fundamental concepts for understanding complex projective geometry, the only prerequisites being a basic knowledge of linear and multilinear algebra and some elementary group theory. In the first part, the general theory of Noetherian rings and modules is developed. A certain amount of homological algebra is included, and rings and modules of fractions are emphasised, as preparation for working with sheaves. In the second part, the central objects are polynomial rings in several variables with coefficients in the field of complex numbers. After Noether's normalisation lemma and Hilbert's Nullstellensatz, affine complex schemes and their morphisms are introduced; Zariski's main theorem and Chevalley's semi-continuity theorem are then proved. Finally, a detailed study of Weil and Cartier divisors provides a solid background for modern intersection theory. This is an excellent textbook for those who seek an efficient and rapid introduction to the geometric applications of commutative algebra.
€58.79
176 Reward Points
Currently out of stock
Delivery 5-7 Days
Eligible for free delivery

Any purchases for more than €10 are eligible for free delivery anywhere in the UK or Ireland!

In this introduction to commutative algebra, the author leads the beginning student through the essential ideas, without getting embroiled in technicalities. The route chosen takes the reader quickly to the fundamental concepts for understanding complex projective geometry, the only prerequisites being a basic knowledge of linear and multilinear algebra and some elementary group theory. In the first part, the general theory of Noetherian rings and modules is developed. A certain amount of homological algebra is included, and rings and modules of fractions are emphasised, as preparation for working with sheaves. In the second part, the central objects are polynomial rings in several variables with coefficients in the field of complex numbers. After Noether's normalisation lemma and Hilbert's Nullstellensatz, affine complex schemes and their morphisms are introduced; Zariski's main theorem and Chevalley's semi-continuity theorem are then proved. Finally, a detailed study of Weil and Cartier divisors provides a solid background for modern intersection theory. This is an excellent textbook for those who seek an efficient and rapid introduction to the geometric applications of commutative algebra.
Currently out of stock
Delivery 5-7 Days
Eligible for free delivery
176 Reward Points

Any purchases for more than €10 are eligible for free delivery anywhere in the UK or Ireland!

€58.79
Currently out of stock
Delivery 5-7 Days
Eligible for free delivery
176 Reward Points

Any purchases for more than €10 are eligible for free delivery anywhere in the UK or Ireland!

Product Description

In this introduction to commutative algebra, the author leads the beginning student through the essential ideas, without getting embroiled in technicalities. The route chosen takes the reader quickly to the fundamental concepts for understanding complex projective geometry, the only prerequisites being a basic knowledge of linear and multilinear algebra and some elementary group theory. In the first part, the general theory of Noetherian rings and modules is developed. A certain amount of homological algebra is included, and rings and modules of fractions are emphasised, as preparation for working with sheaves. In the second part, the central objects are polynomial rings in several variables with coefficients in the field of complex numbers. After Noether's normalisation lemma and Hilbert's Nullstellensatz, affine complex schemes and their morphisms are introduced; Zariski's main theorem and Chevalley's semi-continuity theorem are then proved. Finally, a detailed study of Weil and Cartier divisors provides a solid background for modern intersection theory. This is an excellent textbook for those who seek an efficient and rapid introduction to the geometric applications of commutative algebra.

Product Details

An algebraic introduction to complex projective geometry

ISBN9780521108478

FormatPAPERBACK

Publisher (09 April. 2009)

No. of Pages244

Weight360

Language English (United States)

Dimensions 229 x 152 x 14