BLACK FRIDAY STARTS NOW! 30% Off Everything*! USE PROMO CODE: BLACK 

Abstract domains in constraint programming

by Marie Pelleau | 06 May 2015
Synopsis
Constraint Programming aims at solving hard combinatorial problems, with a computation time increasing in practice exponentially. The methods are today efficient enough to solve large industrial problems, in a generic framework. However, solvers are dedicated to a single variable type: integer or real. Solving mixed problems relies on ad hoc transformations. In another field, Abstract Interpretation offers tools to prove program properties, by studying an abstraction of their concrete semantics, that is, the set of possible values of the variables during an execution. Various representations for these abstractions have been proposed. They are called abstract domains. Abstract domains can mix any type of variables, and even represent relations between the variables. In this work, we define abstract domains for Constraint Programming, so as to build a generic solving method, dealing with both integer and real variables. We also study the octagons abstract domain, already defined in Abstract Interpretation. Guiding the search by the octagonal relations, we obtain good results on a continuous benchmark. We also define our solving method using Abstract Interpretation techniques, in order to include existing abstract domains. Our solver, AbSolute, is able to solve mixed problems and use relational domains.
€72.79
218 Reward Points
Currently out of stock
Delivery in 5-7 Days
Eligible for free delivery

Any purchases for more than €10 are eligible for free delivery anywhere in the UK or Ireland!

Synopsis
Constraint Programming aims at solving hard combinatorial problems, with a computation time increasing in practice exponentially. The methods are today efficient enough to solve large industrial problems, in a generic framework. However, solvers are dedicated to a single variable type: integer or real. Solving mixed problems relies on ad hoc transformations. In another field, Abstract Interpretation offers tools to prove program properties, by studying an abstraction of their concrete semantics, that is, the set of possible values of the variables during an execution. Various representations for these abstractions have been proposed. They are called abstract domains. Abstract domains can mix any type of variables, and even represent relations between the variables. In this work, we define abstract domains for Constraint Programming, so as to build a generic solving method, dealing with both integer and real variables. We also study the octagons abstract domain, already defined in Abstract Interpretation. Guiding the search by the octagonal relations, we obtain good results on a continuous benchmark. We also define our solving method using Abstract Interpretation techniques, in order to include existing abstract domains. Our solver, AbSolute, is able to solve mixed problems and use relational domains.
€72.79
218 Reward Points
Currently out of stock
Delivery in 5-7 Days
Eligible for free delivery

Any purchases for more than €10 are eligible for free delivery anywhere in the UK or Ireland!


Product Details

ISBN - 9781785480102
Format -
Publisher -
Published - 06/05/2015
Categories - All, Books, Business Computers, Computers, Computer Science, All, Books, Business Computers, Computers, Computer Programming
No. of Pages - 176
Weight - 410
Edition -
Series - - Not Available
Page Size - 24
Language - en-US
Readership Age - Not Available
Table of Contents - Not Available

Delivery And Returns

Please Note: Items in our extended range may take longer to deliver. Delivery in 5-7 Days

Place an order for over €10 to receive free delivery to anywhere in Ireland and the UK! See our Delivery Charges section below for a full breakdown of shipping costs for all destinations.

 

Delivery Charges

  Ireland & UK* Europe & USA Australia & Canada Rest of World
Under €10 €3.80 €10 €15 €25
Over €10
Free €10 €15 €25

*Free delivery on all orders over €10 - only applies to order total.

All orders will be delivered by An Post.